`e^(3x)`=

A

`1+(3)/(1!)+(3^(2))/(2!)+(3^(3))/(3!)+....`

B

`1-(3)/(1!)+(3^(2))/(2!)-(3^(3))/(3!)+....`

C

`1+(3x)/(1!)+((3x)^(2))/(2!)+((3x)^(3))/(3!)+....`

D

`1-(3x)/(1!)+((3x)^(2))/(2!)-((3x)^(3))/(3!)+....`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Find {:(" Lt"),(xrarr0):}(e^(3+x)-e^(3))/(x)

Evaluate Lt_(x to0)((e^(3+x)-e^3)/x)

Evaluate the following limits : Lt_(xto0)(e^(3+x)-e^(3))/x

Show that int_(0)^(log 5) (sqrt(e^(x)-1))/(e^(x)+3)e^(x)dx = 4 - pi

int e^(3-5x)dx=

Evaluate {:(" Lt"),(xrarr0):}(e^x+e^(3))/(x)