`e^(-2x)=`

A

`1+(2)/(1!)+(2^(2))/(2!)+(2^(3))/(3!)+....`

B

`1-(2)/(1!)+(2^(2))/(2!)-(2^(3))/(3!)+....`

C

`1+(2x)/(1!)+((2x)^(2))/(2!)+((2x)^(3))/(3!)+....`

D

`1-(2x)/(1!)+((2x)^(2))/(2!)-((2x)^(3))/(3!)+....`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Let f, g, h be real valued functions defined on the interval [0, 1] by f(x) = e^(x^(2)) + e^(-x^(2)) , g(x) = x e^(x^(2)) + e^(-x^(2)) and h(x) = x^(2) e^(x^(2)) + e^(-x^(2)) . If a, b, c respectively denote the absolute maximum of f, g and h on [0, 1] then show that a =b=c.

Let f.g.h be real valued functions defined on the interval [0,1] by f( x) = e^(x^(2)) +e^(-x^(2)) , g (x)= x.e^(x^(2)) +e^(-x^(2)) and h (x) = x^(2) ,e^(x^(2)) +e^(-x^(2)) If a,b,c denote respectively the absolute max. values of f.g.h on [0,1] then

int (1)/(e^(x)+2e^(-x)-3)dx=

int(dx)/((e^(x)+e^(-x))^(2))=

If f: R to R defined by f(x) =(e^(x^(2)) -e^(-x^(2)))/(e^(x^(2)) +e^(-x^(3))) , then f is

If f(x) = cos|e^(2)| x + cos[-e^(2)]x where [x] stands for greatest integer function, then

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=

int (e^(x))/((2e^(x) -3)^(2)) dx =