Home
Class 12
MATHS
e^(5x)+e^(-5x)=...

`e^(5x)+e^(-5x)=`

A

`1+(5x)/(1!)+((5x)^(2))/(2!)+((5x)^(3))/(3!)+....`

B

`1-(5x)/(1!)+((5x)^(2))/(2!)-((5x)^(3))/(3!)+....`

C

`1+((5x)^(2))/(2!)+((5x)^(4))/(3!)+....`

D

`2[1+((5x)^(2))/(2!)+((5x)^(4))/(4!)+....]`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

e^(7x)-e^(-7x)=

The differential equationby eliminating arbitrary constants from the equation y = A e^(5x) + Be^(-2x) is

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

If int x^(3)e^(5x)dx-(e^(5x))/(5^(4))(f(x))+0_(3) then f(x)=

If int x^(3) e^(5x)dx=(e^(5x))/(5^4)(f(x))+c , then f(x)=

Evaluate the integerals. int e ^(x) log (e ^(2x) +5e^(x) +6)dx on R.

(1)/(e^(3x))(e^(x)+e^(5x))=a_(0)+a_(1)x+a_(2)x^(2)+....implies2a_(1)+2^(3)a_(3)+2^(5)a_(5)+.....

Evaluate intx^(5) e^(x) dx

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is: