Home
Class 12
MATHS
e^(7x)-e^(-7x)=...

`e^(7x)-e^(-7x)=`

A

`1+(7x)/(1!)+((7x)^(2))/(2!)+((7x)^(3))/(3!)+....`

B

`1+((7x)^(2))/(2!)+((7x)^(4))/(3!)+....`

C

`2[1+((7x)^(2))/(2!)+((7x)^(4))/(4!)+....]`

D

`2[(7x)/(1!)+((7x)^(3))/(3!)+((7x)^(5))/(5!)+....]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)+e^(-x))/((e^(x)-e^(-x)) log sin hx)dx=

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

If y= 500e^(7x) +600e^(-7x) , show that (d^(2)y)/(dx^(2))= 49y .

(e^(7x)-e^(x))/(e^(4x))=

int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx=

If int (e^(x)-e^(-x))/(e^(2x)+e^(-2x))dx=A ln |(e^(x)+e^(-x)+B)/(e^(x)+e^(-x)-B)|+c then AB=

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))