Home
Class 12
MATHS
2-(3^(2))/(2!)+(3^(3))/(3!)-(3^(4))/(4!)...

`2-(3^(2))/(2!)+(3^(3))/(3!)-(3^(4))/(4!)+....=`

A

`e^(3)`

B

`e^(-3)`

C

`-e^(3)`

D

`-e^(-3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1^(2))/(2!)+(2^(2))/(3!)+(3^(2))/(4!)+....=

-1+(2^(2))/(2!)-(2^(3))/(3!)+(2^(4))/(4!)-....=

1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

Sum of the series 1+(3^(2))/(2!)+(3^(4))/(4!)+(3^(6))/(6!)+...."to "oo is

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+....