Home
Class 12
MATHS
(1)/(1!)+(1+2)/(2!)+(1+2+2^(2))/(3!)+......

`(1)/(1!)+(1+2)/(2!)+(1+2+2^(2))/(3!)+....=`

A

e

B

`e^(2)`

C

`e^(2)+e`

D

`e^(2)-e`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(1!)+(1+3)/(2!)+(1+3+3^(2))/(3!)+....=

(1+(2^(2))/(2!)+(2^(4))/(3!)+(2^(6))/(4!)+....)/(1+(1)/(2!)+(2)/(3!)+(2^(2))/(4!)+....)=

(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+....

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!)+....=

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms