Home
Class 12
MATHS
(1)/(1!)+(1+3)/(2!)+(1+3+3^(2))/(3!)+......

`(1)/(1!)+(1+3)/(2!)+(1+3+3^(2))/(3!)+....=`

A

`e^(3)-e`

B

`(1)/(4)(e^(3)-e)`

C

`(1)/(3)(e^(3)-e)`

D

`(1)/(2)(e^(3)-e)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(1.2)/(1!)+(2.3)/(2!)+(3.4)/(3!)+....=

1+(2)/(1!)+(3)/(2!)+(4)/(3!)+....=

(1-(3)/(1!)+(9)/(2!)-(27)/(3!)+...)(1+(3)/(1!)+(9)/(2!)+(27)/(3!)+....)=

(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+....