Home
Class 12
MATHS
(2)/(2!)+(2+4)/(3!)+(2+4+6)/(4!)+....=...

`(2)/(2!)+(2+4)/(3!)+(2+4+6)/(4!)+....=`

A

`e-2`

B

`e-1`

C

e

D

`e^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1+(2^(2))/(2!)+(2^(4))/(3!)+(2^(6))/(4!)+....)/(1+(1)/(2!)+(2)/(3!)+(2^(2))/(4!)+....)=

-1+(2^(2))/(2!)-(2^(3))/(3!)+(2^(4))/(4!)-....=

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

(2)/(1!)+(4)/(3!)+(6)/(5!)+....=

2-(3^(2))/(2!)+(3^(3))/(3!)-(3^(4))/(4!)+....=

1-(x^(2))/(2!)+(x^(4))/(4!)-(x^(6))/(6!)+....=

(2)/(3!)+(4)/(5!)+(6)/(7!)+....=