Home
Class 12
MATHS
1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(2))/(3!)+...

`1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(2))/(3!)+....=`

A

`(x+1)e^(x)`

B

`(x-1)e^(x)`

C

`xe^(x)`

D

`e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1B|70 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+....)^(2)-(ax+(a^(3)x^(3))/(3!)+(a^(5)x^(5))/(5!)+....)^(2)=

If |x|lt1 then (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+....=

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

3x-(5x^(2))/(2)+(9x^(3))/(3)-(17x^(4))/(4)+....+(-1)^(n-1)((2^(n)+1))/(2)x^(n)+...=

(2x^(2)+3x+4)/((x-1)(x^(2)+2))=