Home
Class 12
MATHS
If 1+(2)/(1!)+(4)/(2!)+(8)/(3!)+....=e^(...

If `1+(2)/(1!)+(4)/(2!)+(8)/(3!)+....=e^(a),1+(4)/(1!)+(16)/(2!)+(64)/(3!)+....=e^(b),1-(2)/(1!)+(4)/(2!)-(8)/(3!)+....=e^(c)` then the ascending order of a, b, c is

A

a,b,c

B

b,c,a

C

c,a,b

D

a,c,b

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1-(2)/(1!)+(4)/(2!)-(8)/(3!)+....)(1+(4)/(1!)+(16)/(2!)+(64)/(3!)+....)=

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

I : (2)/(1!)+(4)/(3!)+(6)/(5!)+....=e-1 II : (3)/(2!)+(5)/(4!)+(7)/(6!)+(9)/(8!)+....=e-1

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

(1)/(2)+(3)/(2).(1)/(4)+(5)/(3).(1)/(8)+(7)/(4).(1)/(16)+....=

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=