Home
Class 12
MATHS
(1)/(1.3)+(1)/(2)((1)/(3.5))+(1)/(3)((1)...

`(1)/(1.3)+(1)/(2)((1)/(3.5))+(1)/(3)((1)/(5.7))+....=`

A

a,b,c

B

b,c,a

C

c,a,b

D

a,c,b

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 4|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(1.3)+(1)/(2.5)+(1)/(3.7)+(1)/(4.9)+...=

2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...] =

(1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

(1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=

I:2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...]=log_(e)2 II:2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=log_(e)2

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=

(1)/(1.3).(1)/(2)+(1)/(2.4).(1)/(2^(2))+(1)/(3.5).(1)/(2^(3))+....=

(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+....=