Home
Class 12
MATHS
A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3)....

A : `(1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2))`
R : `log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b)) R : log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....

e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+... =

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

I:(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....log_(e)2 II:(1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+....=2log_(e)2-1

I:2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...]=log_(e)2 II:2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=log_(e)2

2[1+((log_(e)a)^(2))/(2!)+((log_(e)a)^(4))/(4!)+....] =

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(2))/(3!)+....=

Statement-I : ((x-y)/(x))+(1)/(2)((x-y)/(x))^(2)+(1)/(3)((x-y)/(x))^(3)+….=log_(e )x-log_(e )y Statement-II : (a-1)-((a-1)^(2))/(2)+((a-1)^(3))/(3)-((a-1)^(4))/(4 )+….=log_(e )a Which of the above statements true