Home
Class 12
MATHS
A : (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)...

A : `(a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/(a))^(3)+....=log_(e)((a)/(b))`
R : `log_(e)(1-x)=-x-(x^(2))/(2)-(x^(3))/(3)-(x^(4))/(4)-....`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true but R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 3|5 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

Statement-I : ((x-y)/(x))+(1)/(2)((x-y)/(x))^(2)+(1)/(3)((x-y)/(x))^(3)+….=log_(e )x-log_(e )y Statement-II : (a-1)-((a-1)^(2))/(2)+((a-1)^(3))/(3)-((a-1)^(4))/(4 )+….=log_(e )a Which of the above statements true

e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+... =

1+x(log_(e)2)+(x^(2))/(2!)(log_(e)2)^(2)+(x^(3))/(3!)(log_(e)2)^(3)+....=

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

1+2(log_(e)a)+(2^(2))/(2!)(log_(e)a)^(2)+(2^(3))/(3!)(log_(e)a)^(3)+....=

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

Assertion (A) : The coefficient of of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1