Home
Class 12
MATHS
cos (pi/7) cos ((2pi)/(7) ) cos ( (4pi )...

`cos (pi/7) cos ((2pi)/(7) ) cos ( (4pi )/(7) ) =`

A

`(-1)/(8)`

B

`1/8`

C

`-(3 sqrt3)/(8)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2019(SOLVED)

    TS EAMCET PREVIOUS YEAR PAPERS|Exercise Mathematics|56 Videos
  • TS EAMCET 2015

    TS EAMCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|79 Videos

Similar Questions

Explore conceptually related problems

{:(,"Column-I",,"Column-II"),((A),cos 20^(0) + cos 80^(0) - sqrt(3) "cos" 50^(0),(p),-1),((B),cos 0^(0) + "cos" (pi)/(7) + "cos" (2pi)/(7) + "cos" (4pi)/(7) + "cos" (5pi)/(7) + "cos" (6 pi)/(7),(q),-(3)/(4)),((C),cos 20^(0) + cos 40^(0) + cos 60^(0) - 4 cos 10^(0) "cos" 20^(0)"cos" 30^(0),(r),1),((D),"cos" 20^(0) cos 100^(0) + cos 100^(0) "cos" 140^(0) - cos 140^(0) "cos" 200^(0),(s),0):}

cos. (pi)/(7) + cos. (2pi)/(7) + cos. (3pi)/(7) + cos. (4pi)/(7) + cos. (5pi)/(7) + cos. (6pi)/(7)=

Knowledge Check

  • sin "" (pi)/(7) sin "" (2pi)/(7) sin "" (4pi )/(7)=

    A
    `(sqrt7)/(8)`
    B
    `(sqrt7)/(4)`
    C
    `(sqrt7)/(2)`
    D
    `sqrt7`
  • The value of cos y cos ((pi)/(2) - x) - cos ((pi)/(2) - y) cos x + sin y cos ((pi)/(2) - x) + cos x sin ((pi)/(2) - y) is zero if

    A
    `x = 0`
    B
    y = 0
    C
    x = y
    D
    `n pi + y - (pi)/(4) (n in Z)`
  • "cos" (2pi)/(7)+"cos" (4pi)/(7)+"cos"(6pi)/(7)=

    A
    `(1)/(2)`
    B
    `-(1)/(2)`
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Suppose "cos" (2pi)/(7) + "cos" (4pi)/(7) + "cos" (6pi)/(7) = - (1)/(2) and "cos" (2pi)/(7) "cos"(4pi)/(7) "cos" (6pi)/(7) = - (1)/(8) , then the numerical value of "cosec"^(2) (pi)/(7) + "cosec"^(2)(2pi)/(7) + "cosec"^(2) (3pi)/(7) must be

    Prove that cos. (2pi)/(7). Cos. (4pi)/(7). Cos. (8pi)/(7)=(1)/(8)

    (1+ cos (pi)/(8)) (1+ cos (3pi)/(8)) (1+ cos (5pi)/(8))(1+ cos (7pi)/(8)) = omega

    "cos " pi/7 - "cos " (2pi)/7 + "cos" (3pi)/7 - "cos" (4pi)/7 + "cos "(5pi)/7 - "cos"(6pi)/7 =

    cos. (pi)/(13) + cos. (5pi)/(13) + cos. (8pi)/(13) + cos. (12pi)/(13)=