Home
Class 11
MATHS
If a ,b ,c in R^+, t h e n(b c)/(b+c)+(...

If `a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b)` is always (a)`lt=1/2(a+b+c)` (b)`geq1/3sqrt(a b c)` (c)`lt=1/3(a+b+c)` (d)`geq1/2sqrt(a b c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always (a)geq12 (b)geq9 (c)lt=12 (d)none of these

If a b c = 0, then ({(x^a)^b}^c)/({(x^b)^c}^a) = (a)3 (b) 0 (c) -1 (d) 1

If a,b,c are in H .P.then (1)/(a)+(1)/(b+c),(1)/(b)+(1)/(a+c),(1)/(c)+(1)/(a+b) are in

If a : b=3:4, b : c4:7, t h e n(a+b+c)/c is equal to 1 b. 2 c. 3 d. 7

If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

Value of the expression (b-c)/(r_1)+(c-a)/(r_2)+(a-b)/(r_3) is equal to 1 (b) 2 (c) 3 (d) 0

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

Prove that if a,b,c gt 0 then a^2(b+c)+b^2(c+a)+c^2(a+b) geq 6abc