Home
Class 11
MATHS
If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)...

If `y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx)` is equal to (a) `y` (b) `y+(x^n)/(n !)` (c) `y-(x^n)/(n !)` (d) `y-1-(x^n)/(n !)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

(x+y)^(n) + (x-y)^(n) is equal to

If x^(m)y^(n)=(x+y)^(m+n), then ((dy)/(dx))_(x=1,y=2) is equal to

If x^(n) y^(n) =(x+y) ^(n),then (dy)/(dx)=

If x^n+y^n=a^n , then dy/dx=

If x ^(n) y^(n) =( x+y ) ^(n),then (dy)/(dx)=

If y=1+(x)/(|_(1))+(x^(2))/(|_(2))+......+(x^(n))/(|_(n))+ then the value of (dy)/(dx)-y=

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is: