Home
Class 12
MATHS
If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(s...

If `tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha,` then prove that `x^2=sin2alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

If alpha = Tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) then prove that x^(2) = sin 2alpha .

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=theta , then prove that, sin 2 theta=x^(2) .

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is