Home
Class 11
MATHS
Let x1 , x2 , x3,....., xk be the divis...

Let ` x_1 , x_2 , x_3,....., x_k` be the divisors of positive integer n (including 1 and n). If `x_1 + x_2 + x_3 + ...... + x_k = 75` Then ` sum_(i=1)^k (1/x_i)` is equal to (A) `75/k` (B)`75/n` (C) `1/n` (D)`1/75`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer 'n' (including 1 and x). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(r=1)^(k)(1)/(x_(i)) is equal to

If barx is the mean of x_1, x_2, x_3, ... .. , x_n , then sum_(i=1)^(n)(x_i-barx)=

If 1+x^(2)=sqrt(3)x, then sum_(n=1)^(24)(x^(n)-(1)/(x^(n))) is equal to

Let f (x ) = | 3 - | 2- | x- 1 |||, AA x in R be not differentiable at x _ 1 , x _ 2 , x _ 3, ….x_ n , then sum _ (i= 1 ) ^( n ) x _ i^2 equal to :