Home
Class 12
MATHS
If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'...

If `y=(tan^- 1)(sqrt(1+x^2)-1)/x,` then `y'(1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2)))), then y'(1) is:

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =