Home
Class 12
MATHS
If a gt0, x=(t+(1)/(t))^(a) and y=a^((t+...

If `a gt0, x=(t+(1)/(t))^(a) and y=a^((t+(1)/(t)))`, find `(dy)/(dx).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(t+(1)/(t))^(a),y=a^(t+(1)/(t)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a(t+(1)/(t)) and y=a(t-(1)/(t)), prove that (dy)/(dx)=(x)/(y)

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

If x=a((1-t^(2))/(1+t^(2))) and y=(2t)/(1-t^(2)) , then find (dy)/(dx) .

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)