Home
Class 12
MATHS
If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2...

If `x+y=3e^2t h e d/(dx)(x^y)=0forx=` `e^2` b. `e^e` c. `e` d. `2e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+ y = 3e^2 then d/(dx)(x^y)=0 for x =

If x+y=3e^(2) the (d)/(dx)(x^(y))=0 for x=e^(2)be^(e)c.ed.2e^(2)

(d)/(dx)(e^(log_(e)x^(3)))

d/dx ((3e^(x)+4)/(2e^(x)-3)) =

Find the value of (d)/(dx)(x(e^(x)+e^(4x))/(e^(x)+e^(-2x))) .

The differentiation of cotx with respect to x is -cosec^2x i.e. d/(dx)(cotx)=-cos e c^2x

(d)/(dx) {log ((x ^(2))/(e ^(x)))}=

The solution of the differential equation (dy)/(dx)+1=e^(x+y), is a. (x+y)e^(x+y)=0 b. (x+C)e^(x+y)=0 c. (x-C)e^(x+y)=1 d. (x+C)e^(x+y)+1=0

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C