Home
Class 12
MATHS
y=sqrt(x^(2)+1)-log((1+sqrt(1+1))/(x))^(...

y=sqrt(x^(2)+1)-log((1+sqrt(1+1))/(x))^((4))

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)

IF [y{sqrt(x^2 + 1)- log {1/x +sqrt(1+1/x^2)}] find dy/dx

If y sqrt(1+ x ^(2)) = log ( x + sqrt( 1 + x ^(2))) then (1 + x ^(2)) y_(1) + xy=

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x), show that (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x) , show that, (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If y=(x^(2))/(2)+(x)/(2) sqrt(x^(2)+1)+log sqrt(x+sqrt(x^(2)+1)) , prove that, 2y=x (dy)/(dx)+log((dy)/(dx))

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,