Home
Class 11
MATHS
Prove that "^n Cr+^(n-1)Cr+...+^r Cr=^(n...

Prove that `"^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that nC_(r)+n-1C_(r)+n-2C_(r)+.......+rC_(r)=n+1C_(1)

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

Prove that (r+1)^(n)C_(r)-r^(n)C_(r)+(r-1)^(n)C_(2)-^(n)C_(3)+...+(-1)^(r)n_(C_(r))=(-1)^(r_(n-2))C_(r)

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=