Home
Class 12
MATHS
9cos^2x+4sin^2x=5=>tanx=...

`9cos^2x+4sin^2x=5=>tanx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

9cos^(2)x+4sin^(2)x=5rArr tan x=

int_(0)^((pi)/(4))(dx)/(9cos^2 x +sin^2x) .

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

Prove that: (1+sin2x-cos2x)/(1+sin2x+cos2x)=tanx

If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

Find the common roots of the equation 2 sin^(2)x +sin^(2) x =2 and sin 2x+ cos 2x=tanx .

Evaluate: (i) int(sec^2x)/(tanx+2)\ dx (ii) int(2cos2x+sec^2x)/(sin2x+tanx-5)\ dx