Home
Class 11
MATHS
Let n1ltn2ltn3ltn4ltn5 be positive integ...

Let `n_1ltn_2ltn_3ltn_4ltn_5` be positive integers such that `n_1+n_2+n_3+n_4+n_5="20.` then the number of distinct arrangements `n_1, n_2, n_3, n_4, n_5` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let n_1ltn_2ltn_3ltn_4ltn_5 be positive integers such that n_1+n_2+n_3+n_4+n_5=20 . Then the numbr of distinct arrangments (n_1,n_2,n_3,n_4,n_5) is_________

The least positive integer n such that 2 divides n,3 divides n+1,4 divides n+2,5 divides n+3 and 6 divides n+4 is

Let n be a positive integer such that sin (pi/(2n))+cos (pi/(2n))= sqrt(n)/2 then (A) n=6 (B) n=1,2,3,….8 (C) n=5 (D) none of these

The number of positive integers 'n' for which 3n-4,4n-5 and 5n-3 are all primes is

If 'n' is a positive integer,then n.1+(n-1).2+(n-2).3+...+1.n=