Home
Class 12
MATHS
|[a+b,a+2b,a+3b],[a+2b,a+3b,a+4b],[a+4b,...

|[a+b,a+2b,a+3b],[a+2b,a+3b,a+4b],[a+4b,a+5b,a+6b]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following has/have value equal to zero? |[8, 2, 7],[ 12, 3, 5],[ 16, 4, 3]| b. |[1//a, a^2,b c],[1//b,b^2,a c],[1//c,c^2,a b]| c. |[a+b,2a+b,3a+b],[2a+b,3a+b,4a+b],[4a+b,5a+b,6a+b]| d. |[2, 43, 3],[ 7, 35, 4],[ 3, 17, 2]|

Prove that |[a+b,a+2b,a+3b] , [a+3b,a+4b,a+5b] , [a+5b,a+6b,a+7b]|=0

Without expanding the determinant, prove that |{:(a+b, 2a+b, 3a+b),(2a+b, 3a+b, 4a+b), (4a+b, 5a+b, 6a+b):}|=0.

Prove that: |[a+3b, a+5b, a+7b],[a+4b, a+6b, a+8b], [a+5b, a+7b, a+9b]|= 0

Select and write the correct answer from the given alternatives in each of the following: |(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b)| =

Without expanding show that following : |[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]| = a^3

The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

Consider abs[[a,a+b,a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]]

|{:(a+b,2a+b,3a+b),(2a+b,3a+b,4a+b),(4a+b,5a+b,6a+b):}|=0