Home
Class 9
MATHS
f(x)=e^(x)cos x,x in[(pi)/(2),(pi)/(2)]...

f(x)=e^(x)cos x,x in[(pi)/(2),(pi)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify Rolles theorem for function f(x)=e^(x)cos x on [-pi/2,pi/2]

If f(x)=cos^(2)x*e^(tan x),x in(-(pi)/(2),(pi)/(2)) ,then

If f(x)=(e^(x)+e^(-x)-2)/(x sin x) , for x in [(-pi)/(2), (pi)/(2)]-{0} , then for f to be continuous in [(-pi)/(2), (pi)/(2)], f(0)=

If f(x)=(e^(x)+e^(-x)-2)/(x sin x) , for x in [(-pi)/(2), (pi)/(2)]-{0} , then for f to be continuous in [(-pi)/(2), (pi)/(2)], f(0)=

If f(x)=e^(x)+int_(0)^(sin x)(e^(t)dt)/(cos^(2)x+2t sin x-t^(2))AA x in(-(pi)/(2),(pi)/(2)),then

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

If f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2)) then check the monotonicity of f(x)

If f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2)) then check the monotonicity of f(x)

If f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2)) then check the monotonicity of f(x)