Home
Class 12
MATHS
" (ii) "x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0...

" (ii) "x+y=tan^(-1)y:y^(2)y'+y^(2)+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show the differential equation : x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: x + y = tan^(-1)y : y^2y' + y^2 + 1 = 0

Verify that the given function (explicit or implicit) is a solution of the correseponding differential equation : x + y = tan^-1 y : y^2 y' + y^2 + 1 = 0

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: x+y=tan^(-1)y : y^2y^(prime)+y^2+1=0

Verify that the given functions (explicit or implicit) is the solution of the corresponding differential equation . (x+y)=tan ^-1 y , y^2 y^'+y^2+1=0

If cos^(-1)x+Cos^(-1)y=(pi)/2 and Tan^(-1)x-Tan^(-1)y=0 then x^(2)+xy+y^(2)=

If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx) , then f(y)=

If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx) , then f(y)=

If x+y= tan^(-1)y and (d^(2)y)/(dx^(2))=f(y)(dy)/(dx) then f(y)=

The solution of differential equation (1+y^(2))+((x-2e^(tan^(-1)y))dy)/(dx)=0 is (x-2)=ke^(tan^(-1)y)xe^(tan-1)y=e^(2)tan^(-4)y+kxe^(tan^(-1)y)=tan^(-1)y+kxe^(2tan^(-1)y)=e^(2tan^(-1)y)+k