Home
Class 11
MATHS
log(4)(2x^(2)+x+1)-log(2)(2x-1)<=-tan(7 ...

log_(4)(2x^(2)+x+1)-log_(2)(2x-1)<=-tan(7 pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

If log_(2)(x^(2)+1)+log_(13)(x^(2)+1)=log_(2)(x^(2)+1)log_(13)(x^(2)+1)*(x!=0) then log_(7)(x^(2)+24) is equal to

log_(2)(x^(2)-1)=log_((1)/(2))(x-1)

If log_(4)(x - 1) = log_(2)(x - 3) , then x may be

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

The expression: (((x^(2)+3x+2)/(x+2))+3x-(x(x^(3)+1))/((x+1)(x^(2)+1))-log_(2)8)/((x-1)(log_(2)3)(log_(3)4)(log_(4)5)(log_(5)2)) reduces to

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4