Home
Class 11
MATHS
0log(4)(x^(2)-1)-log(4)(x-1)^(2)=log(4)s...

0log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

log_(2)log_(3)log_(4)(x-1)>0

(log_(2)x)^(2)+4(log_(2)x)-1=0

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

2log_(4)(4-x)=4-log_(2)(-2-x)

Solve for x:log_(2)(4(4^(x)+1))*log_(2)(4^(x)+1)=log_((1)/(sqrt(3)))(1)/(sqrt(8))

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "