Home
Class 12
MATHS
(iii)sin^(-1)((x+sqrt(1-x^(2)))/(sqrt(2)...

(iii)sin^(-1)((x+sqrt(1-x^(2)))/(sqrt(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Write each of the following in the simplest form: tan^(-1){x/(a+sqrt(a^2-x^2))} where -a < x < a (ii) sin^(-1){(x+sqrt(1-x^2))/(sqrt(2))} , -1/2 < x < 1/(sqrt(2))

Write each of the following in the simplest form: tan^(-1){x/(a+sqrt(a^2-x^2))}, -a

Prove that sin^(-1). ((x + sqrt(1 - x^(2)))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

inte^(sin^(-1)x)((x+sqrt(1-x^2))/(sqrt(1-x^2)))dx=

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Differentiate the following function with respect to x:sin^(-1){(x+sqrt(1-x^(2)))/(sqrt(2))},quad -1

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)