Home
Class 9
MATHS
x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))...

x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify x^(3)-y^(3)= (x-y)(x^(2)+y^(2)+xy) Hence factorise 216x^(3)-125y^(3)

The factors of x^(3)-x^(2)y-xy^(2)+y^(3) are (a (x+y)(x^(2)-xy+y^(2))(b)(x+y)(x^(2)+xy+y^(2))(c)(x+y)^(2)(x-y)(d)(x-y)^(2)(x+y)

Simplify: (x^(3)-y^(3))/(3x^(2)+9xy+6y^(2))xx(x^(2)+2xy+y^(2))/(x^(2)-y^(2))

If x^(3)+y^(3)+xy^(2)+x^(2)y-x^(2)-y^(2)=0 then int ydx=

If x=2+3i and y=2-3i then find the values of : (x^(2)+xy+y^(2))/(x^(2)-xy+y^(2))

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)