Home
Class 12
PHYSICS
[" 6.The dimensions of "R" in the equati...

[" 6.The dimensions of "R" in the equation "Q=Q_(0)(1-e^(-t/RC))],[" are "],[[" (a) ",[ML^(2)T^(-3)A^(-2)]," (b) "[ML^(2)T^(-2)A^(-3)]],[" (c) "[M^(2)L^(2)T^(-3)A^(-2)]," (d) "[ML^(2)T^(-1)A^(-2)]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The dimensions of R in the equations Q=Q_(0)(1-e^(-t//RC)) are

ML^(3) T^(-1) Q^(-2) is dimension of

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

The roots of the equation " "(q-r)x^(2)+(r-p)x+(p-q)=0 are :a) (r-p)(q-r), 1 b) (p-q)/(q-r), 1 c) (p-r)/(q-r), 2 d) (q-r)/(p-q), 2

If the roots of the equation p(q-r)x^2+q(r-p)x+r(p-q)=0 be equal ,show that 1/p+1/r=2/q

If the roots of the equation p(q-r)x^2+q(r-p)x+r(p-q)=0 be equal, show that 1/p+1/r=2/q .

The solution of equation (p+q-x)/(r)+(q+r-x)/(p)+(r+p-x)/(q)+(3x)/(p+q+r)=0 is