Home
Class 10
MATHS
[" If "(cot theta+tan theta)=m," and "(s...

[" If "(cot theta+tan theta)=m," and "(sec theta-cos theta)=n," prove that "],[,(m^(2)n)^(2/3)-(mn^(2))^(2/3)=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos ec theta-sin theta=m and sec theta-cos theta=n prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1

If cosec theta- sin theta = m and sec theta - cos theta = n , prove that: (m^(2)n)^(2/3)+(n^(2)m)^(2/3)=1 .

If " cosec"theta-sin theta=m and sec theta-cos theta=n , then prove that (m^(2)n)^((2)/(3))+(mn^(2))^((2)/(3))=1.

If cos ec theta+cot theta=m and cos ec theta-cot theta=n, prove that mn=1

If cot theta + tan theta = m , sec theta - cos theta = n " then " (m^(2)n)^(2//3)-(mn^(2))^(2//3)

If "cosec" theta- sin theta=m^(3) and sec theta-cos theta=n^(3) , then prove that m^(2)n^(2)(m^(2)+n^(2))=1.

If cot theta+tan theta=m and sec theta-cos theta=n then (m^(2))^((2)/(3))-(mn^(2))^((2)/(3))=

If "cosec " theta - sin theta = m, sec theta - cos theta =n , " then "(m^(2)n)^(2//3) + (mn^(2))^(2//3) =

If (sec theta +tan theta )=m and (sec theta - tan theta )=n, shown that mn = 1 .

If cot theta(1+sin theta)=4man d cot theta(1-sin theta)=4n prove that (m^(2)-n^(2))^(2)=mn