Home
Class 12
MATHS
(6)/(5)a^(log(2)x*log(10)a*log(a)5)-3^(l...

(6)/(5)a^(log_(2)x*log_(10)a*log_(a)5)-3^(log_(10)(x/10))=9^(log_(100)x+log_(4)2)" then "x=

Promotional Banner

Similar Questions

Explore conceptually related problems

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

5^(log_(10)x)=50-x^(log_(10)5)

If (6)/(5)a^(A)-3^(B)=9^(C) where A=log_(a)x*log_(10)a log_(a)5,B=log_(10)((x)/(10)) and C=log_(100)x+log_(4)2. Find x

x^((log_(10)x+5)/(3))=10^(5+log_(10)x)

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x