Home
Class 11
MATHS
" The value of "(Lt)/(x rarr0)((int(0)^(...

" The value of "(Lt)/(x rarr0)((int_(0)^(x)e^(x)dx)^(2))/(int e^(2x^(2))dx)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr0)((int_(0)^(x)sin^(3)xdx)/(x^(4)))

The value of lim_(x rarr0)(int_(0)^(x)fdt)/(x) is

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

Lt_(x rarr0)((int_(0)^(x)tan^(2)t sec^(2)tdt)/(x^(3)))=

Lim_(x rarr0)int_(0)^(x)(sin^(2)u du)/(sin x)

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr0)(2int_(0)^(cos x ) cos^(-1) (t))/(2x- sin 2 x)dx is

The value of lim_(x rarr 0) (int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is :