Home
Class 11
MATHS
Let an be the nth term of a G.P. of posi...

Let `a_n` be the nth term of a G.P. of positive numbers. Let `sum_(n=1)^(100)a_(2n)=alphaa n dsum_(n=1)^(100)a_(2n-1)=beta` , such that `alpha!=beta` , then the common ratio is `alpha//beta` b. `beta//alpha` c. `sqrt(alpha//beta)` d. `sqrt(beta//alpha)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)=alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is

Let a_(n) be the n^(th) term of an A.P.If sum_(r=1)^(100)a_(2r)=alpha&sum_(r=1)^(100)a_(2r-1)=beta, then the common difference of the A.P.is alpha-beta(b)beta-alpha(alpha-beta)/(2)quad (d) None of these

If n tan alpha=(n+1)tan beta then show that tan(alpha-beta)=(sin2 beta)/(2n+1-cos2 beta)

If (log)_(10)(1025)/(1024)=alphaa n d(log)_(10)2=beta , then the value of (log)_(10)4100 in terms of alphaa n dbeta is equal to alpha+9beta (b) alpha+12beta 12alpha+beta (d) 9alpha+beta

Given that (log)_p x=alpha\ a n d(log)_q x=beta,\ then value of equals- a. (alphabeta)/(beta-alpha) b. (beta-alpha)/(alphabeta) c. (alpha-beta)/(alphabeta) d. (alphabeta)/(alpha-beta)

Find the sum to n terms, whose nth term is tan[alpha+(n-1)beta]tan (alpha+nbeta) .

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha