Home
Class 9
MATHS
f(x)=9x^3-3x^2+x-5,\ g(x)=x-2/3...

`f(x)=9x^3-3x^2+x-5,\ g(x)=x-2/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not: f(x)=2x^3-9x^2+x+12 ,\ g(x)=3-2x

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

f(x) =x^3 -9x g(x)=x^2 -2x -3 Which of the following expressions is equivalent to (f(x))/(g(x)) , for x gt 3 ?

check whether g(x) is a factor of f(x) or not f(x)=x^5+3x^4−x^3−3x^2+5x+15 , g(x)=x+3

check whether g(x) is a factor of f(x) or not f(x)= x^5+3x^4−x^3−3x^2+5x+15 , g(x)= x+3

Find the remainder when f(x)=9x^3-3x^2+x-5, is divided by g(x)=x-2/3

Let f(x) = 3/( 3x^2 - 9) and g(x)= x^2/( 3x^2 - 9) int (g(x) - f(x)) dx is equal to ?

Divide P(x)=2x^4+3x^3-2x^2-9x-12 by g(x)=x^2-3

If f(x)=(x-2)^2 and g(x) =3x-3 then: (f@g)(2)=