Home
Class 11
MATHS
If a,b,c,d be in G.P. show that (b-c)^2+...

If a,b,c,d be in G.P. show that `(b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

If a,b,c,d be in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

If a,b,c,d………are in G.P., then show that (a+b)^2, (b+c)^2, (c+d)^2 are in G.P.

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a,b,c,d are in G.P.show that: (ab+bc+cd)^(2)=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))

If a,b,c,d are in G.P., then the value of (a-c)^2+(b-c)^2+(b-d)^2-(a-d)^2 is (A) 0 (B) 1 (C) a+d (D) a-d

If a,b,c, and d are in G.P., show that (ab+bc+cd)^(2)=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2)) .

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)