Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_( xrarr0) (1-cosx)/(x^(2))

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0)(sinx)^(2tanx)

lim_(xrarr0)(sinx)^(2tanx)

For the curve sin x + si y=1 lying in the first quadrant there exist a constant a for which lim _(x to 0) x ^(a) (d^(2)y)/(dx ^(2)) =L (not zero), then 2 alpha=

Ror the curve sin x+ sin y=1 lying in the first quadrant there exists a constant alpha for which lim _(x to 0) x ^(alpha)(d ^(2)y)/(dx ^(2))=I, (not zero) The volue of L:

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is