Home
Class 12
MATHS
Find dy/dx for the following: sqrt(x)+sq...

Find `dy/dx` for the following: `sqrt(x)+sqrt(y)=sqrt(a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=sqrt(sin sqrt(x))

Find dy/dx for the following functions: y= (sqrt x + (1/sqrt x))^2 .

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

3) x sqrt(x)+y sqrt(y)=a sqrt(a) . Find dy/dx

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) when y=log_(10)(sqrt(x-a)+sqrt(x-b))

(dy)/(dx)=sqrt(y-x)

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find (dy)/(dx) if y=e^(sqrt(x))*log(cos sqrt(x))