Home
Class 11
MATHS
If w be an imaginary cube root of unity,...

If `w` be an imaginary cube root of unity, show that `1+ w^n + w^(2n) = 0`, for `n=2, 4.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4 .

If w be an imaginary cube root of unity, prove that (1-w+w^2)^2+(1+w-w^2)^2=-4

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

If w is an imaginary cube root of unity then prove that If w is a complex cube root of unity , find the value of (1+w)(1+w^2)(1+w^4)(1+w^8)..... to n factors.

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega be an imaginary cube root or unity, prove that (1- omega+ omega^(2)) (1-omega^(2)+ omega^(4)) (1- omega^(4)+ omega ^(8))..."to" 2 n th factor =2^(2n)

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4