Home
Class 12
MATHS
lim(x->0)(sin[sec^2x])/(1+[cosx]), where...

`lim_(x->0)(sin[sec^2x])/(1+[cosx]),` where `[*]` denotes greatest integral function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0)(sin[cosx])/(1+[cosx]) , ([.] denotes the greatest integer function)

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to