Home
Class 11
PHYSICS
A particle is moving along the path give...

A particle is moving along the path given by `y=(C )/(6)t^(6)` (where `C` is a positive constant). The relation between the acceleration (`a`) and the velocity (`v`) of the particle at `t=5sec` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle is moving along x-axis with acceleration a=a_(0)(1-t//T) where a_(0) and T are constants. The particle at t=0 has zero velocity. Calculate the distance(position ) of particle.

The displacement x of a particle at time t moving along a straight line path is given by x^(2) = at^(2) + 2bt + c where a, b and c are constants. The acceleration of the particle varies as

A particle moving along a straight line has the relation s=t^(3)+2t+3 , connecting the distance s describe by the particle in time t. Find the velocity and acceleration of the particle at t=4 sec.

The instantaneous velocity of a particle moving in a straight line is given as a function of time by: v=v_0 (1-((t)/(t_0))^(n)) where t_0 is a constant and n is a positive integer . The average velocity of the particle between t=0 and t=t_0 is (3v_0)/(4 ) .Then , the value of n is

The instantaneous velocity of a particle moving in a straight line is given as a function of time by: v=v_0 (1-((t)/(t_0))^(n)) where t_0 is a constant and n is a positive integer . The average velocity of the particle between t=0 and t=t_0 is (3v_0)/(4 ) .Then , the value of n is