Home
Class 11
MATHS
In triangle ABC, if sin^2A+sin^2B=sin^2C...

In triangle ABC, if `sin^2A+sin^2B=sin^2C`, then the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If in a triangle ABC, sin^2A+sin^2B+sin^2C=2 then the triangle is always

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

In a triangle ABC if sin A sin B= ab//c^2 , then the triangle is

In triangle ABC if sin^2B+sin^2C=sin^2A then

In Delta ABC, if sin^2 A+sin^2 B+sin^2 C =9//4 , then the triangle is

In Delta ABC, if sin^2 A+sin^2 B=sin^2 C , then C=

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :