Home
Class 12
MATHS
sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)...

`sin^(-1)[x sqrt(1-x) - sqrtx sqrt(1-x^2)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the simplest form of sin^-1[xsqrt(1-x)-sqrtx.sqrt(1-x^2)]

If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))] find dy/dx

Find the derivation of sin^-1 (x^2 sqrt(1-x) - sqrtx sqrt(1-x^4)) with respect to x.

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

int (1+x+sqrt(1+x^2))/(sqrtx+sqrt(1+x)) dx=

lim_(x->1)sqrt(x+8)/sqrtx