Home
Class 11
PHYSICS
A body travels uniformly a distance of (...

A body travels uniformly a distance of `(13.8pm0.2)` m in a time `(4.0pm0.3)` S. The velocity of the body within error limit is

A

`(3.45pm0.2)" ms"^(-1)`

B

`(3.45pm0.3)" ms"^(-1)`

C

`(3.45pm0.4)" ms"^(-1)`

D

`(3.45pm0.5)" ms"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the velocity of the body within error limits, we will follow these steps: ### Step 1: Calculate the main value of velocity The formula for velocity \( v \) is given by: \[ v = \frac{s}{t} \] where \( s \) is the distance traveled and \( t \) is the time taken. Given: - Distance \( s = 13.8 \, \text{m} \) - Time \( t = 4.0 \, \text{s} \) Substituting the values: \[ v = \frac{13.8 \, \text{m}}{4.0 \, \text{s}} = 3.45 \, \text{m/s} \] ### Step 2: Calculate the relative errors To calculate the error in velocity, we need to find the relative errors in distance and time. Given: - Error in distance \( \Delta s = 0.2 \, \text{m} \) - Error in time \( \Delta t = 0.3 \, \text{s} \) The relative error in distance \( \frac{\Delta s}{s} \) and time \( \frac{\Delta t}{t} \) can be calculated as follows: \[ \frac{\Delta s}{s} = \frac{0.2}{13.8} \] \[ \frac{\Delta t}{t} = \frac{0.3}{4.0} \] Calculating these values: \[ \frac{\Delta s}{s} = \frac{0.2}{13.8} \approx 0.01449 \] \[ \frac{\Delta t}{t} = \frac{0.3}{4.0} = 0.075 \] ### Step 3: Calculate the total relative error in velocity The total relative error in velocity \( \frac{\Delta v}{v} \) is given by: \[ \frac{\Delta v}{v} = \frac{\Delta s}{s} + \frac{\Delta t}{t} \] Substituting the values: \[ \frac{\Delta v}{v} = 0.01449 + 0.075 \approx 0.08949 \] ### Step 4: Calculate the absolute error in velocity Now, we can find the absolute error \( \Delta v \): \[ \Delta v = v \times \frac{\Delta v}{v} \] Substituting the values: \[ \Delta v = 3.45 \times 0.08949 \approx 0.308 \] ### Step 5: Present the final result The velocity of the body within error limits can be expressed as: \[ v = 3.45 \pm 0.31 \, \text{m/s} \] ### Summary The final answer is: \[ \text{Velocity} = 3.45 \pm 0.31 \, \text{m/s} \]
Promotional Banner

Topper's Solved these Questions

  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Chapter exercises (taking it together)|61 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Assertion and reason|15 Videos
  • UNITS, DIMENSIONS & ERROR ANALYSIS

    DC PANDEY|Exercise Check Point 1.2|10 Videos
  • UNIT AND DIMENSIONS

    DC PANDEY|Exercise Assertion And Reason|2 Videos
  • VECTORS

    DC PANDEY|Exercise Medical enrances gallery|9 Videos