Home
Class 11
PHYSICS
If A+B=C,|A|=2|B|and B.C=0, then...

If `A+B=C,|A|=2|B|and B.C=0,` then

A

`|A+B|=|A+B|`

B

`|A+C|=B`

C

`A.Blt0`

D

A.C may be zero

Text Solution

Verified by Experts

The correct Answer is:
C

(c ) Given B.C=0

`therefore B bot C`
`A sin theta =B `
`or Sin theta (B)/(A) =(1)/(2)`
`therefore theta =30^(@) or A.B lt 0`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    DC PANDEY|Exercise Exercise|13 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY|Exercise Level 2 Subjective|14 Videos

Similar Questions

Explore conceptually related problems

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If two events A and B are such that P(A^(c))=0.3.P(B)=0.4 and P(A nn B^(c))=0.5 then P(A uu B^(c))=0.8(b)P[B nn(A uu B^(c))]=0.2P((B)/(A)uu B^(c))=0.25 (d) P((B)/(A)uu B^(c))=0.3

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

If a+b+c=3 and a>0,b>0,c>0 the greatest value of a^(2)b^(3)c^(2)

If a + b + c = 0 and a ne c then the roots of the equation (b + c - a)x^(2) + (c + a - b)x + (a + b - c) = 0 , are

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1," "0):}|=0andalpha!=1//2 , then a,b,c are in