Home
Class 11
PHYSICS
Match the following |{:(,"Table-1",,"T...

Match the following
`|{:(,"Table-1",,"Table-2"),((A),"stress"xx"Strain",(P),J),((B),(YA)/l,(Q),N//m),((C),Yl^(3),(R),J//m^(3)),((D),(Fl)/(AY),(S),m):}|`

A

`{:(A,B,C,D),(r,q,p,s):}`

B

`{:(A,B,C,D),(q,r,p,s):}`

C

`{:(A,B,C,D),(p,r,r,q):}`

D

`{:(A,B,C,D),(q,r,s,p):}`

Text Solution

Verified by Experts

The correct Answer is:
a

(a) (a) Stress `xx` Strain`=Nm^(-2)=Nm^(-2)*(m^(3))/(m^(3))=Jm^(-3)`
(b) `(YA)/(l)=(Nm^(-2)m^(2))/(m)=Nm^(-1)`
(c) `Yl^(3)=Nm^(-2)m^(3)=Nm=J`
(d) `(Fl)/(AY)=(Nm)/(m^(2)Nm^(-2))=m`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    DC PANDEY|Exercise Medical entrances s gallery|21 Videos
  • ELASTICITY

    DC PANDEY|Exercise Chapter Exercise|73 Videos
  • CURRENT ELECTRICITY

    DC PANDEY|Exercise All Questions|434 Videos
  • ELECTROSTATICS

    DC PANDEY|Exercise Integer|17 Videos

Similar Questions

Explore conceptually related problems

Match the following column I and column II. {:("Column I","Column II"),(A. "Stress" xx "strain", 1. j),(B. YA//I,2. N//m),(C.Yl^(3),3.J//m^(3)),(D.Fl//AY,4.m):}

Match the following : {:(,"Column-I",,"Column-II"),((A),3s^(1),(p),n=3),((B), 3p^(1),(q), l=0),((C ), 4s^(1),(r ) , l=1),((D),4d^(1),(s),m=0),(,,(t),m=+-1):}

Match the following {:(,"Table - 1",,"Table - 2",),((A),sigma^(2)//epsi_(0),(P),C^(2)//J - m,),((B),epsi_(0),(Q),"Farad",),((C),("ampere - second")/("Volt"),(R),J//m^(3),),((D),(V)/(E),(S),"metre",):}

Match the following. |{:(,"Table-1",,"Table-2"),((A),"Coefficient of viscosity",(P),[M^(2)L^(-1)T^(-2)]),((B),"Surface tension",(Q),[ML^(0)T^(-2)]),((C),"Modulus of elasticity",(R),[ML^(-1) T^(-2)]),((D),"Energy per unit volume",(S),"None"),(,"of a fiuid",,):}|

Match the following column. {:(,"A",,"B"),((A),"Work",(p),kg m//s^(2)),((B),"Force",(q),m^(2)),((C),"Speed",(r),m//s),((D),"Area",(s),kg m^(2)//s^(2)):}

Consider the following table Than calculate value of experssion |(n_(1)+n_(2)+n_(3)+n_(4))/(m_(1)+m_(2)+m_(3)+m_(4))|^(2) .

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are