Home
Class 12
PHYSICS
A lens of focal length 1m forms Fraunhof...

A lens of focal length `1m` forms Fraunhofer diffraction pattern of a single slit of width `0.04 cm` in its focal plane. The incident light contains two wavwlength `lambda_(1)` and `lambda_(2)`. It is found that the fourth minimum crresponding to `lambda_(1)` and the fifth minimum corresponding to `lambda_(2)` occur at the same point `0.5 cm` from the central maximum. Compute `lambda_(1)` and `lambda_(2)`

Text Solution

Verified by Experts

The angular position of nth minima
`a sin theta = nlambda`
For `lambda_(1), a sin theta_(1)=4 lambda_(1)`
For `lambda_(2), a sin theta_(2)=5lambda_(2)`
we have `theta_(1) = theta_(2)=theta`
`a sin theta=4lambda_(1)=5lambda_(2)`
`y=ftheta rArr theta=y//f [:. D=f]`
Separation `y=0.5 cm=5xx10^(-3)m` focal length `f=1` m
`theta = y/f=(5xx10^(-3))/1=0.005` rad
Wavelength `lambda_(1)=(a sin theta)/4=(atheta)/4`
`=(0.04xx10^(-2)xx0.005)/4`
`=5xx10^(-7)m=500nm`
Wavelength `lambda_(2)=(4lambda_(1))/5=(4xx500)/5=400nm`
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    DC PANDEY|Exercise Check point|65 Videos
  • WAVE OPTICS

    DC PANDEY|Exercise taking it together|47 Videos
  • SOLVED PAPERS 2018

    DC PANDEY|Exercise JIPMER|22 Videos

Similar Questions

Explore conceptually related problems

A double-slit interference pattern is formed on a screen in a Young's double slit experiment performed with light consisting of two wavelengths lambda_(1) = 6000A and lambda_(2) = 4800A. It is observed that the maximum of the 16^(th) order corresponding to lambda = 6000 A coincides with a maximum of the n order corresponding to lambda = 4800 A The value of n is

A source emitting light of wavelengths lambda_1 and lambda_2 is used in Young's double-slit experiment. If fourth bright of lambda_1 coincides with sixth bright of lambda_2 , then

Bichromatic light is used in YDSE having wavelengths lambda_1 = 400 nm and lambda_2= 700nm . Find minimum order of bright fringe of lambda_1 which overlaps with bright fringe of lambda_2 .

In a Young's double-slit experiment, if the incident light consists of two wavelengths lambda_(1) and lambda_(2) , the slit separation is d, and the distance between the slit and the screen is D, the maxima due to each wavelength will coincide at a distance from the central maxima, given by

Bichromatic light is used in YDSE having wavelengths lambda_(1)=400nm and lambda_(2)=700nm Find minimum order of lambda_(1) which overlaps with lambda_(2)

In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength lambda_1 is found to be coincident with third maximum at lambda_2 . So

Wavelength of light used in an optical instrument are lambda_(1) = 4000 Å and lambda_(2) = 5000Å then ratio of their respective resolving resolving powers (corresponding to lambda_(1) and lambda_(2) ) is

Wavelength of light used in an optical instrument are lambda_(1)=400 Å and lambda_(2)=5000 Å , then ratio of their respective resolving power (corresponding to lambda_(1) and lambda_(2)) is

The fraunhofer diffraction pattern of a single slit is formed at the focal plane of a lens of focal length 1m. The width of the slit is 0.3 mm. if the third minimum is formed at a distance of 5 mm from the central maximum then calculate the wavelength of light.